Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.316
Filtrar
1.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610233

RESUMO

Increased incidence of traumatic brain injury (TBI) imposes a growing need to understand the pathology of brain trauma. A correlation between the incidence of multiple brain traumas and rates of behavioural and cognitive deficiencies has been identified amongst people that experienced multiple TBI events. Mechanically, repetitive TBIs may affect brain tissue in a similar way to cyclic loading. Hence, the potential susceptibility of brain tissue to mechanical fatigue is of interest. Although temporal changes in ovine brain tissue viscoelasticity and biological fatigue of other tissues such as tendons and arteries have been investigated, no methodology currently exists to cyclically load ex vivo brain tissue. A novel rheology-based approach found a consistent, initial stiffening response of the brain tissue before a notable softening when subjected to a subsequential cyclic rotational shear. History dependence of the mechanical properties of brain tissue indicates susceptibility to mechanical fatigue. Results from this investigation increase understanding of the fatigue properties of brain tissue and could be used to strengthen therapy and prevention of TBI, or computational models of repetitive head injuries.


Assuntos
Lesões Encefálicas Traumáticas , Vibração , Ovinos , Animais , Humanos , Modalidades de Fisioterapia , Encéfalo , Reologia
2.
Med Eng Phys ; 126: 104144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621846

RESUMO

The present study adopts a smartphone-based approach for the experimental characterization of coronary flows. Technically, Particle Tracking Velocimetry (PTV) measurements were performed using a smartphone camera and a low-power continuous wave laser in realistic healthy and stenosed phantoms of left anterior descending artery with inflow Reynolds numbers approximately ranging from 20 to 200. A Lagrangian-Eulerian mapping was performed to convert Lagrangian PTV velocity data to a Eulerian grid. Eulerian velocity and vorticity data obtained from smartphone-based PTV measurements were compared with Particle Image Velocimetry (PIV) measurements performed with a smartphone-based setup and with a conventional setup based on a high-power double-pulsed laser and a CMOS camera. Smartphone-based PTV and PIV velocity flow fields substantially agreed with conventional PIV measurements, with the former characterized by lower average percentage differences than the latter. Discrepancies emerged at high flow regimes, especially at the stenosis throat, due to particle image blur generated by smartphone camera shutter speed and image acquisition frequency. In conclusion, the present findings demonstrate the feasibility of PTV measurements using a smartphone camera and a low-power light source for the in vitro characterization of cardiovascular flows for research, industrial and educational purposes, with advantages in terms of costs, safety and usability.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Smartphone , Reologia/métodos , Velocidade do Fluxo Sanguíneo , Imagens de Fantasmas
3.
Zhongguo Zhong Yao Za Zhi ; 49(3): 634-643, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621867

RESUMO

This paper aims to study the correlation between the physicochemical properties of raw materials and intermediates and the molding quality and law of traditional Chinese medicine(TCM) gel plaster by using TCM slices and powder as raw materials. 48 TCM compounds are selected as model prescriptions to prepare gel plasters. The rotational rheometer is used to determine the rheological parameters of the plaster, including storage modulus(G'), loss modulus(G″), yield stress(τ), and creep compliance [J(t)]. The molding quality of the prepared TCM gel plaster is evaluated by subjective and objective measures. Clustering and principal component analysis are conducted to evaluate the physical properties of the plaster. By measuring the rheological properties of the plaster, the molding quality of the TCM gel plaster can be predicted, with an accuracy of 83.72% after seven days of modeling and 88.37% after 30 days of modeling. When the parameters such as G' and G″ of the plaster are large, and the [J(t)] is small, the molding quality of the plaster is better. When the plaster coating point is no less than 3, it is difficult to be coated. In addition, when the proportion of metal ions in the prescription is higher, the 30-day forming quality of the plaster is mainly affected, and the viscosity of the plaster is poor. If the prescription contains many acidic chemical components, the 7-day forming quality of the plaster is mainly affected, with many residuals. The results suggest that the rheological properties of the plaster can be used to predict the molding quality of TCM slice and powder gel plaster. It can provide a reference for the development of TCM gel plaster prescriptions.


Assuntos
Medicina Tradicional Chinesa , Prescrições , Pós , Viscosidade , Reologia
4.
Int J Biol Macromol ; 265(Pt 2): 131159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565484

RESUMO

A goal of this study is to explore the difference in rheological properties of xanthan gum (XG)-based mixtures with gum arabic (GA) or GA-based emulsion (GAE). The stability of GAE was improved by thickening with XG. The intrinsic viscosity of all mixtures decreased as GA concentration increased, implying an XG conformational transition from the disordered to the ordered form. All mixtures except for an XG-GA mixture at 6.0 % GA attained a higher consistency index value than XG alone, indicating synergistic interactions between the components. At a high GA concentration (>3.0 %), the XG-GAE mixture showed higher relative apparent viscosity values than the XG-GA mixture. All mixtures except for an XG-GA mixture at 6.0 % GA showed higher elastic modulus and lower viscous modulus values than XG alone. Consequently, all mixtures showed lower tan δ values (0.26-0.30) than XG alone (0.31). Moreover, with a high GA concentration (>1.5 %), the XG-GAE mixtures achieved lower relative tan δ values than XG-GA mixture. These results indicate that XG formed a higher weak gel-like network with GAE than GA. Overall, the findings demonstrate that the interaction between XG and GA is influenced by conformational changes in the latter in both aqueous and emulsion systems.


Assuntos
Goma Arábica , Gomas Vegetais , Emulsões , Polissacarídeos Bacterianos , Viscosidade , Reologia/métodos
5.
Opt Lett ; 49(7): 1725-1728, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560847

RESUMO

Ultrasound coupling is one of the critical challenges for traditional photoacoustic (or optoacoustic) microscopy (PAM) techniques transferred to the clinical examination of chronic wounds and open tissues. A promising alternative potential solution for breaking the limitation of ultrasound coupling in PAM is photoacoustic remote sensing (PARS), which implements all-optical non-interferometric photoacoustic measurements. Functional imaging of PARS microscopy was demonstrated from the aspects of histopathology and oxygen metabolism, while its performance in hemodynamic quantification remains unexplored. In this Letter, we present an all-optical thermal-tagging flowmetry approach for PARS microscopy and demonstrate it with comprehensive mathematical modeling and ex vivo and in vivo experimental validations. Experimental results demonstrated that the detectable range of the blood flow rate was from 0 to 12 mm/s with a high accuracy (measurement error:±1.2%) at 10-kHz laser pulse repetition rate. The proposed all-optical thermal-tagging flowmetry offers an effective alternative approach for PARS microscopy realizing non-contact dye-free hemodynamic imaging.


Assuntos
Técnicas Fotoacústicas , Tecnologia de Sensoriamento Remoto , Técnicas Fotoacústicas/métodos , Reologia/métodos , Ultrassonografia/métodos , Microscopia/métodos
6.
Opt Lett ; 49(7): 1741-1744, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560851

RESUMO

Speckle-correlation optical scattering imaging (SCOSI) has shown the potential for non-invasive biomedical diagnostic applications, which directly utilizes the scattering patterns to reconstruct the deep and non-line-of-sight objects. However, the course of the translation of this technique to preclinical biomedical imaging applications has been postponed by the following two facts: 1) the field of view of SCOSI was significantly limited by the optical memory effect, and 2) the molecular-tagged functional imaging of the biological tissues remains largely unexplored. In this work, a proof-of-concept design of the first-generation widefield functional SCOSI (WF-SCOSI) system was presented for simultaneously achieving mesoscopic mapping of fluid morphology and flow rate, which was realized by implementing the concepts of scanning synthesis and fluorescence scattering flowmetry. The ex vivo imaging results of the fluorescence-labeled large-scale blood vessel network phantom underneath the strong scatters demonstrated the effectiveness of WF-SCOSI toward non-invasive hemodynamic imaging applications.


Assuntos
Diagnóstico por Imagem , Hemodinâmica , Imagens de Fantasmas , Reologia , Desenho de Equipamento , Imagem Óptica/métodos
7.
Biofabrication ; 16(3)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38565131

RESUMO

Extrusion-based bioprinting is a promising technology for the fabrication of complex three-dimensional (3D) tissue-engineered constructs. To further improve the printing accuracy and provide mechanical support during the printing process, hydrogel-based support bath materials have been developed. However, the gel structure of some support bath materials can be compromised when exposed to certain bioink crosslinking cues, hence their compatibility with bioinks can be limited. In this study, a xanthan gum-based composite support material compatible with multiple crosslinking mechanisms is developed. Different support bath materials can have different underlying polymeric structures, for example, particulate suspensions and polymer solution with varying supramolecular structure) and these properties are governed by a variety of different intermolecular interactions. However, common rheological behavior can be expected because they have similar demonstrated performance and functionality. To provide a detailed exploration/identification of the common rheological properties expressed by different support bath materials from a unified perspective, benchmark support bath materials from previous studies were prepared. A comparative rheological study revealed both the structural and shear behavior characteristics shared by support bath materials, including yield stress, gel complex moduli, shear-thinning behavior, and self-healing properties. Gel structural stability and functionality of support materials were tested in the presence of various crosslinking stimuli, confirming the versatility of the xanthan-based support material. We further investigated the effect of support materials and the diameter of extrusion needles on the printability of bioinks to demonstrate the improvement in bioink printability and structural integrity. Cytotoxicity and cell encapsulation viability tests were carried out to confirm the cell compatibility of the xanthan gum-based support bath material. We propose and demonstrate the versatility and compatibility of the novel support bath material and provide detailed new insight into the essential properties and behavior of these materials that serve as a guide for further development of support bath-based 3D bioprinting.


Assuntos
Bioimpressão , Engenharia Tecidual , Polissacarídeos Bacterianos , Reologia , Impressão Tridimensional , Bioimpressão/métodos , Hidrogéis/química , Tecidos Suporte/química
8.
Meat Sci ; 212: 109465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452565

RESUMO

To study the impact of ultrasonic duration (0, 30, and 60 min) and sodium bicarbonate concentration (0% and 0.2%) on the gel properties of reduced-salt pork myofibrillar protein, the changes in cooking yield, colour, water retention, texture properties, and dynamic rheology were investigated. The findings revealed that added sodium bicarbonate significantly increased (P < 0.05) cooking yield, hardness, springiness, and strength of myofibrillar protein while reducing centrifugal loss. Furthermore, the incorporation of sodium bicarbonate led to a significant decrease in L⁎, a⁎, b⁎, and white values of cooked myofibrillar protein; these effects were further amplified with increasing ultrasonic duration (P < 0.05). Additionally, storage modulus (G') significantly increased for myofibrillar protein treated with ultrasonic-assisted sodium bicarbonate treatment resulting in a more compact gel structure post-cooking. In summary, the results demonstrated that ultrasonic-assisted sodium bicarbonate treatment could enhance the tightness of reduced-salt myofibrillar protein gel structure while improving the water retention and texture properties.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Suínos , Bicarbonato de Sódio , Ultrassom , Carne Vermelha/análise , Cloreto de Sódio , Cloreto de Sódio na Dieta , Reologia , Água/química
9.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543010

RESUMO

Wheat flour is a common raw material in the food industry; however, Andean grains, such as quinoa and kiwicha, are gaining popularity due to their quality proteins, fiber, and bioactive compounds. A trend has been observed toward the enrichment of products with these Andean flours, with them even being used to develop gluten-free foods. However, evaluating interactions between raw materials during industrial processes can be complicated due to the diversity of inputs. This study focused on evaluating the technofunctional and rheological properties of wheat, quinoa and kiwicha flours using a simple lattice mixture design. Seven treatments were obtained, including pure flours and ternary mixtures. Analyses of particle size distribution, water absorption index, subjective water absorption capacity, soluble material index, swelling power, apparent density and physicochemical properties were performed. Additionally, color analysis, photomicrographs and Raman spectroscopy were carried out. The results indicate significant differences in properties such as particle size, water absorption and rheological properties between the flours and their mixtures. Variations in color and microstructure were observed, while Raman spectroscopy provided information on molecular composition. These findings contribute to the understanding of the behavior of Andean flours in baking and pastry making, facilitating their application in innovative food products.


Assuntos
Chenopodium quinoa , Farinha , Farinha/análise , Chenopodium quinoa/química , Triticum/química , Reologia , Água
10.
Int J Biol Macromol ; 264(Pt 1): 130600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442829

RESUMO

We explored the rheological and tribological properties of potato starch agglomerated with a sugar binder (maltodextrin or lactose) at various concentrations by using a fluidized bed granulator. The magnitudes of consistency index and apparent viscosity of agglomerated potato starch (APS) decreased as the binder concentration was increased. Moreover, APS with a sugar binder showed lower viscoelastic moduli and higher tan δ values compared to APS with water as the binder (the control). The gel strength of all agglomerates decreased as the sugar concentration was increased. All samples showed anti-thixotropic behavior, and especially, APS with 20 % lactose showed a small anti-thixotropic area. Utilizing the Arrhenius equation clearly elucidated the effect of temperature on the apparent viscosity of all the samples. Although the maltodextrin concentration had little influence on the activation energy of APS, it increased as the lactose concentration was increased. APS samples with a sugar binder showed greater friction coefficient values compared to the control, with maltodextrin having a significant impact. The findings indicate that the rheological and tribological properties of APS rely on the type and concentration of sugar binder.


Assuntos
Solanum tuberosum , Lactose , Amido , Açúcares , Temperatura , Reologia , Viscosidade
11.
Int J Biol Macromol ; 265(Pt 1): 130748, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467216

RESUMO

The present study aimed to investigate the structural and physicochemical characteristics of acid-extracted pumpkin pectic polysaccharide (AcPP) and to evaluate their flow rheological properties. AcPP was extracted from pumpkin pulp using the citric acid extraction method. The physicochemical and structural properties were analyzed by chemical methods and instrumental analyses. The obtained results showed that AcPP consisted predominantly of GalA (85.99 %) and small amounts of Rha, Gal, and Ara, with the ratio of HG/RG-I being 81.39/16.75. In addition, AcPP had medium DE (45.34 %) and contained four macromolecular populations with different Mw of 106.03 (main), 10.15, 4.99, and 2.90 kDa. The NMR analysis further confirmed that AcPP contained a linear backbone consisting of α-1,4-linked GalA residues, some of which were partially methyl-esterified. Furthermore, AcPP was amorphous in nature and had favorable thermal stability. The effects of extrinsic factors on the flow rheological properties of AcPP were evaluated. In particular, the high concentrations of CaCl2 (8 mM) and MgCl2 (10 mM) were effective in enhancing the viscosity and non-Newtonian shear-thinning behavior of the AcPP solution. This study elucidates the unique molecular structure of AcPP and suggests the potential of AcPP as a rheology modifier in low-viscous and mineral-reinforced beverages.


Assuntos
Cucurbita , Pectinas , Pectinas/química , Polissacarídeos/química , Reologia , Espectroscopia de Ressonância Magnética , Viscosidade
12.
Carbohydr Polym ; 334: 122041, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553238

RESUMO

Recently, there has been a focus on using biopolymer-based particles to stabilize high internal phase Pickering emulsions (HIPPEs) due to the notable advances in biocompatibility and biodegradability. In this work, the complex particles of peanut protein isolate and carboxymethyl cellulose (CMC) with various substitution degrees (DS; 0.7 and 0.9) and weight average molecular weights (Mw; 90, 250, and 700 kDa) were prepared and characterized as novel stabilizers. For the obtained four types of morphologically distinct particles, the complex particles formed by CMC (0.9 DS and 250 kDa) showed cluster structures with an average size of 1.271 µm, equally biphasic wettability with three-phase contact angles of 91.5°, and the highest diffusion rate at the oil-water interface. HIPPEs stabilized by these particles exhibited more elastic behavior due to the smaller tanδ and higher viscosity, as well as excellent thixotropic recovery properties and stability against heating, storage, and freeze-thawing. Furthermore, confocal laser scanning microscopy verified that these particles formed a dense interfacial layer around the oil droplets, which could resist flocculation and coalescence between oil droplets during in vitro digestion. The improved bioaccessibility of curcumin-loaded HIPPEs made these delivery systems potentially apply in functional foods.


Assuntos
Curcumina , Emulsões/química , Curcumina/química , Carboximetilcelulose Sódica , Molhabilidade , Reologia , Tamanho da Partícula
13.
Int J Pharm ; 655: 124070, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38554740

RESUMO

The importance of ink rheology to the outcome of 3D printing is well recognized. However, rheological properties of printing inks containing drug nanocrystals have not been widely investigated. Therefore, the objective of this study was to establish a correlation between the composition of nanocrystal printing ink, the ink rheology, and the entire printing process. Indomethacin was used as a model poorly soluble drug to produce nanosuspensions with improved solubility properties through particle size reduction. The nanosuspensions were further developed into semisolid extrusion 3D printing inks with varying nanocrystal and poloxamer 407 concentrations. Nanocrystals were found to affect the rheological properties of the printing inks both by being less self-supporting and having higher yielding resistances. During printing, nozzle blockages occurred. Nevertheless, all inks were found to be printable. Finally, the rheological properties of the inks were successfully correlated with various printing and product properties. Overall, these experiments shed new light on the rheological properties of printing inks containing nanocrystals.


Assuntos
Nanopartículas , Poloxâmero , Géis , Excipientes/química , Impressão Tridimensional , Reologia , Tinta
14.
Bioresour Technol ; 399: 130518, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432544

RESUMO

This study identified the intrinsic relationships among slurry rheology, particle characteristics, and lignocellulosic liquefaction/saccharification based on correlation analysis and principal component analysis during the hydrolysis of sugarcane bagasse pretreated by deep eutectic solvents (DES) and mechanical milling (MM). The DES-MM pretreated lignocellulosic slurry (20% solids) exhibited high apparent viscosity of 1.4 × 104 Pa·s and shear stress of 929.0 Pa under steady state. Glucose production had a negative linear correlation with slurry viscosity (R2, 0.69-0.97), whereas its correlation with yield stress (R2, 0.85-0.98) depended on the particle liquefaction rate. The availability of free water provided a major contribution to improving slurry rheology. However, the size reduction of submillimeter particles and the changes in particle hydrophilicity during liquefaction were not significantly correlated with rheological changes. Various interrelated particle characteristics and rheological changes were integrated into two simple principal variables to predict glucose production with a high R2 of 0.96.


Assuntos
Celulase , Saccharum , Celulose , Hidrólise , Glucose , Reologia
15.
Soft Matter ; 20(12): 2750-2766, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38440846

RESUMO

DNA, which naturally occurs in linear, ring, and supercoiled topologies, frequently undergoes enzyme-driven topological conversion and fragmentation in vivo, enabling it to perform a variety of functions within the cell. In vitro, highly concentrated DNA polymers form entanglements that yield viscoelastic properties dependent on the topologies and lengths of the DNA. Enzyme-driven alterations of DNA size and shape therefore offer a means of designing active materials with programmable viscoelastic properties. Here, we incorporate multi-site restriction endonucleases into dense DNA solutions to linearize and fragment circular DNA molecules. We pair optical tweezers microrheology with differential dynamic microscopy and single-molecule tracking to measure the linear and nonlinear viscoelastic response and transport properties of entangled DNA solutions over a wide range of spatiotemporal scales throughout the course of enzymatic digestion. We show that, at short timescales, relative to the relaxation timescales of the polymers, digestion of these 'topologically-active' fluids initially causes an increase in elasticity and relaxation times followed by a gradual decrease. Conversely, for long timescales, linear viscoelastic moduli exhibit signatures of increasing elasticity. DNA diffusion, likewise, becomes increasingly slowed, in direct opposition to the short-time behavior. We hypothesize that this scale-dependent rheology arises from the population of small DNA fragments, which increases as digestion proceeds, driving self-association of larger fragments via depletion interactions, giving rise to slow relaxation modes of clusters of entangled chains, interspersed among shorter unentangled fragments. While these slow modes likely dominate at long times, they are presumably frozen out in the short-time limit, which instead probes the faster relaxation modes of the unentangled population.


Assuntos
DNA Circular , DNA , Elasticidade , Polímeros , Reologia
16.
Biorheology ; 59(3-4): 63-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38461497

RESUMO

Leukocytes and platelets must adhere to the wall of blood vessels to carry out their protective functions in inflammation and haemostasis. Recruitment is critically dependent on rheological variables (wall shear rate and stress, red cell aggregation and haematocrit) which affect delivery to the vessel wall as well as velocities and forces experienced there. Leukocyte recruitment is efficient only up to wall shear rates of about 300 s-1 and usually restricted to low-shear post-capillary venules in inflammation. Being smaller, platelets experience lower velocities and shear forces adjacent to the wall and can adhere at much higher shear rates for haemostasis in arteries. In addition, we found quite different effects of variations in haematocrit or red cell aggregation on attachment of neutrophils or platelets, which also assist their separate recruitment in venules or arteries. However, it has become increasingly evident that inflammatory and thrombotic responses may occur together, with platelets promoting the adhesion and activation of neutrophils and monocytes. Indeed, it is 30 years since we demonstrated that platelets could cause neutrophils to aggregate in suspension and, when attached to a surface, could support selectin-mediated rolling of all leukocytes. Thrombin-activated platelets could further induce neutrophil activation and immobilisation. In some conditions, platelets could bind to intact endothelial monolayers and capture neutrophils or monocytes. Subsequently, we found that extracellular vesicles released by activated platelets (PEV) fulfilled similar functions when deposited on surfaces or bound to endothelial cells. In murine models, platelets or PEV could act as bridges for monocytes in inflamed vessels. Thus, leukocytes and platelets are rheologically adapted for their separate functions, while novel thrombo-inflammatory pathways using platelets or PEV may underlie pathogenic leukocyte recruitment.


Assuntos
Agregação Eritrocítica , Adesividade Plaquetária , Humanos , Animais , Camundongos , Adesividade Plaquetária/fisiologia , Células Endoteliais , Plaquetas/fisiologia , Leucócitos/fisiologia , Neutrófilos , Reologia , Inflamação/metabolismo , Adesão Celular , Selectina-P/metabolismo
17.
J Texture Stud ; 55(2): e12828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486415

RESUMO

Rheological analysis of citrus pectin at pH 3 and 7 elucidates its structural dynamics, revealing distinct behaviors influenced by pH. At pH 3, pectin exhibits shear-thinning, with solvent-independent unified rheological profiles identifying three concentration regimes: 0.5%-1.5%, 2%-3%, and 3.5%-4%. These regimes, alongside Cox-Merz superpositions, outline the semi-dilute (c*) and concentrated (c**) transitions at 1.5%-2% and 3%-3.5%, respectively. Moreover, a Morris equation exponent of 0.65 indicates flexible, mobility-restricted macromolecules. Conversely, at pH 7, increased viscosities and Morris plot linearity for p = .1 suggest rigid chain behavior due to electrostatic repulsion among ionized acidic groups. This rigidity leads to concentration-dependent self-assembly structures that diverge from expected unified rheological profiles, a deviation amplified by heating-cooling cycles. This study clarifies the impact of pH on citrus pectin's rheology and emphasizes the intricate relationship between polymeric chain rigidity, self-assembly, and viscosity. By providing a refined understanding of these mechanisms, our findings contribute to the broader field of polysaccharide research, offering insights critical for developing and optimizing pectin-based applications in various industries.


Assuntos
Citrus , Pectinas , Temperatura Baixa , Reologia
18.
Food Res Int ; 182: 114177, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519164

RESUMO

This work investigated the effect of ultrasound (US) treatment synergized with κ-carrageenan (KC) on the gel properties, structural characteristics and microstructures of myofibrillar protein (MP) gel. The results demonstrated that simply adding KC enhanced the gel strength and water holding capacity (WHC) of MP gels. Moreover, the gel strength and WHC of MP gels were increased by 56.67 % and 76.19 % via 20 min US treatment synergized with KC, which was mainly attributed to the changes in sulfhydryl content, surface hydrophobicity, and fluorescence intensity of MP gels. Based on the results of molecular docking and secondary structure, it can be hypothesized that the synergistic effect resulted in the rearrangement of the proteins, which altered the interaction site between MP gels and KC, accompanied by stronger binding. Furthermore, the microstructural results indicated that moderate US treatment (20 min) facilitated the production of a more compact and denser MP gels matrix with uniformly sized and distributed pores. However, excessive US treatment (40 and 50 min) caused the MP gels to form looser and disordered gel structure, which reduced the gel strength and WHC. This study suggested that combining of US and KC was a potential tactic to enhance the gelling properties of heat-induced MP gels.


Assuntos
Temperatura Alta , Proteínas Musculares , Carragenina , Proteínas Musculares/química , Simulação de Acoplamento Molecular , Reologia , Géis/química , Água/química
19.
Nat Commun ; 15(1): 1912, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429263

RESUMO

Material properties of phase-separated biomolecular condensates, enriched with disordered proteins, dictate many cellular functions. Contrary to the progress made in understanding the sequence-dependent phase separation of proteins, little is known about the sequence determinants of condensate material properties. Using the hydropathy scale and Martini models, we computationally decipher these relationships for charge-rich disordered protein condensates. Our computations yield dynamical, rheological, and interfacial properties of condensates that are quantitatively comparable with experimentally characterized condensates. Interestingly, we find that the material properties of model and natural proteins respond similarly to charge segregation, despite different sequence compositions. Molecular interactions within the condensates closely resemble those within the single-chain ensembles. Consequently, the material properties strongly correlate with molecular contact dynamics and single-chain structural properties. We demonstrate the potential to harness the sequence characteristics of disordered proteins for predicting and engineering the material properties of functional condensates, with insights from the dilute phase properties.


Assuntos
Condensados Biomoleculares , Engenharia , Conformação Molecular , 60422 , Reologia
20.
PLoS One ; 19(3): e0299296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452005

RESUMO

Stressed soft materials commonly present viscoelastic signatures in the form of power-law or exponential decay. Although exponential responses are the most common, power-law time dependencies arise peculiarly in complex soft materials such as living cells. Understanding the microscale mechanisms that drive rheologic behaviors at the macroscale shall be transformative in fields such as material design and bioengineering. Using an elastic network model of macromolecules immersed in a viscous fluid, we numerically reproduce those characteristic viscoelastic relaxations and show how the microscopic interactions determine the rheologic response. The macromolecules, represented by particles in the network, interact with neighbors through a spring constant k and with fluid through a non-linear drag regime. The dissipative force is given by γvα, where v is the particle's velocity, and γ and α are mesoscopic parameters. Physically, the sublinear regime of the drag forces is related to micro-deformations of the macromolecules, while α ≥ 1 represents rigid cases. We obtain exponential or power-law relaxations or a transitional behavior between them by changing k, γ, and α. We find that exponential decays are indeed the most common behavior. However, power laws may arise when forces between the macromolecules and the fluid are sublinear. Our findings show that in materials not too soft not too elastic, the rheological responses are entirely controlled by α in the sublinear regime. More specifically, power-law responses arise for 0.3 ⪅ α ⪅ 0.45, while exponential responses for small and large values of α, namely, 0.0 ⪅ α ⪅ 0.2 and 0.55 ⪅ α ⪅ 1.0.


Assuntos
Engenharia Biomédica , Viscosidade , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...